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Abstract

Increasingly, models of the world are directly built from
images. The paper discusses a number of recent develop-
ments that try to push the enveloppe of what image-based
modeling can achieve. In particular, the analysis of 3D sur-
face deformations is discussed for face animation, the ex-
traction of matches under wide baseline conditions for 3D
scene reconstruction, and the synthesis of viewpoint depen-
dent textures for realistic object rendering.

1 Image-based modeling

During the last few years, low-cost and user-friendly so-
lutions for 3D modeling have become available. Shape-
from-video [13, 23, 12] extracts 3D shapes and their tex-
tures from video sequences as the only input. One-shot
structured light techniques [33, 24] get such information
from a single image, but need the projection of a special
pattern. These techniques have the advantage that they
are cheaper than traditional solutions like dedicated multi-
camera rigs or laser scanners, as they only require off-the-
shelf hardware. Moreover, they offer more flexibility in
terms of portability and the range of object sizes they can
handle.

This paper presents ongoing work on three extension of
such systems.

Deformable shapes: The detailed capture of deformable
3D shapes is to a large extent still an open challenge.
We discuss preliminary results for faces. Based on a
one-shot, structured light method, 3D deformations are
extracted. In particular, face dynamics during speech
are acquired, analysed, and resynthesised for anima-
tion.

Wide-baseline matching: Shape-from-video requires
large overlap between subsequent frames. Often, one
would like to reconstruct from a small number of
stills, taken from very different viewpoints. Based

on local, viewpoint invariant features, wide-baseline
matching ia made possible, and hence the viewpoints
can be farther apart.

3D textures: Texture mapping is an old trick to hide the
absence of geometric detail. A serious shortcoming
of traditional texture mapping is that changing self-
occlusions and shadows which result from changing
viewpoint or illumination resp. cannot be simulated.
Based on a series of views of a textured surface, a tex-
ture model is extracted, that captures viewpoint depen-
dencies of the surface’s appearance.

2 Face animation

Realistic face animation still is a challenge. Faces are the
focus of attention for human observers, and even the small-
est deviations from real speech are noticed. One has to deal
with subtle effects, that leave strong impressions. Although
recent computer animation movies have shown convincing
results, there still is a lot of manual work involved.

When using 3D modeling for face animation, the syn-
thesis can simulate the underlying anatomy of a face, or
only generate the exterior, visible shape. If one can model
the anatomy really well, one has very good control over
the face, even for expressions that have not been observed
before. With its many muscles, the face anatomy is very
complicated, however. Work on emotional expressions by
Pighin et al. [22] has demonstrated that realistic anima-
tion can also be achieved without such detailed knowledge.
Their animations are based solely on observed, exterior face
shape. These represent a kind of keyframes, between which
a linear morph is applied.

Here a similar approach is presented – that is also only
based on the extraction of exterior shapes – but for the more
subtle case of speech animation. This is a harder problem
than emotions as higher levels of geometric detail are re-
quired. Moreover, simple morphs between mouth positions
do not capture the subtle co-articulation effects of fluent
speech. Our work is not the first attempt (see e.g. [25]), but



seems to be more automated and based on data of higher
spatiotemporal resolution.

2.1 Extracting example visemes

Animation of speech has much in common with speech
synthesis. Rather than composing a sequence of phonemes
according to co-articulation principles, animation generates
sequences of visemes. These are the basic mouth deforma-
tions during speech. Whereas there is a consensus about the
set of phonemes, there is less unanimity about the selection
of visemes. There is no one-to-one relation between the 52
phonemes and the visemes, as different sounds may look
the same and v.v. Realistic animation experiments have
used any number from as few as 16 [9] up to about 50
visemes [26]. At least as important are the co-articulation
principles that are used.

We based our selection of visemes on the work of
Owens [21] for consonants. We use his consonant groups
that yield the same visual impression when uttered, but do
not consider all the possible instances of different, neigh-
boring vocals that he mentions. In fact, we only con-
sider two cases: rounded and widened, that represent the
instances farthest from the neutral expression (lips closed
and relaxed). For the visemes that correspond to vocals,
we used those proposed by Montgomery and Jackson [18].
This leads to a total of 20 visemes: 12 representing the
consonants, 7 representing the monophtongs, and one rep-
resenting the neutral pose. This viseme selection differs
from others proposed earlier. It contains more consonant
visemes than most, mainly because the distinction between
the rounded and widened shapes is made systematically.
This selection seems to be a good compromise between the
number of visemes and the realism that is obtained.

The face deformations corresponding to these visemes
had to be analysed carefully. These deformations were ex-
tracted for faces of different age, race, and sex. Speech af-
fects the entire facial structure below the eyes [19]. There-
fore, we extracted 3D data for a complete face, but with
emphasis on the area between the eyes and the chin. The
3D viseme extraction follows a number of steps, which are
repeated for the different example faces.

The process starts with that every test subject says a sen-
tence, that contains all the visemes at least once, but typi-
cally twice or more. This is captured in 3D using Eyetron-
ics’ ShapeSnatcher system [8] It projects a grid onto the
face, and extracts the 3D shape and texture fromET a single
image. By using a video camera, a quick succession of 3D
snapshots can be acquired. We are especially interested in
frames that represent the different visemes. These are the
frames where the lips reach their extremal positions for that
sound (Ezzat and Poggio [9] followed the same approach
in 2D). The acquisition system yields the 3D coordinates of

Figure 1. 3D Snapshots of a talking face, for one of
the test subjects.

Figure 2. Left: generic head model, Right: underly-
ing mesh. This generic head model has been produced
by Duran (the outer skin) and by Imagination in Mo-
tion (tongue and teeth), in the context of the European
Mesh project.

thousands of points for every frame. The output is a con-
nected, triangulated and textured surface. Fig. 1 shows a
few 3D snapshots obtained from such an acquisition ses-
sion.

The problem is that the 3D points correspond to pro-
jected grid intersections, not corresponding, physical points
on the face. Hence, the points for which 3D coordinates are
given change from frame to frame. The next steps have to
solve for the physical correspondences.

Physical correspondences are solved by mapping the 3D
data onto a generic head mesh. This is a triangulated surface
with 2268 vertices for the skin, supplemented with seper-
ate meshes for the eyes, teeth, and tongue (another 8848,
mainly for the teeth). Fig. 2 shows the generic head and
its topology. This generic head model is fitted to the 3D
data of the example face (i.e. 3D neutral face data of one
of the test subjects) in a total of three steps. The first step
in this fitting procedure deforms the generic head by a sim-
ple rotation, translation, and anisotropic scaling operation,
to crudely align salient features like eye corners, nose tip,



Figure 3. Four visemes for one of the test subjects.

etc., with those on the neutral shape of the example face.
After this initial transformation, the salient features are bet-
ter aligned through a piecewise constant, vertical stretch in
5 facial regions: from top-of-head to eyebrows, from eye-
brows to eye corners, from eye corners to nose tip, from
nose tip to mouth corners, and from mouth corners to bot-
tom of the chin. The third step performs a local morph. This
morphing maps the topology of the generic head precisely
onto the example shape. In order to ease this mapping, the
example faces had about 100 points marked as black dots.

These three steps are only applied once to the neutral
face of a test person. From the initial, neutral frame the
points are tracked throughout the video and the mesh adapts
automatically to subsequenct 3D snapshots for non-neutral
poses. The special facial features and the marked points
were extracted in 3D from all frames, the mesh was de-
formed to keep these points aligned, and intermediate mesh
points were positioned with the help of Radial Basis Func-
tions [20] and projection onto the measured 3D surface.

In order to get the catalogue of 3D visemes for a single
test person, the corresponding frames were selected from
the video and their 3D meshes were averaged over differ-
ent instances of the same viseme and stored. A number of
visemes for one of the example faces is given in fig. 3. As
a matter of fact, not the 3D meshes themselves were stored,

but the difference with respect to the neutral one for the
same person. These deformation fields of a single person
still contain a lot of redundancy. This was investigated by
applying a Principal Component Analysis. Over 99% of the
variance in the deformation fields was found in the space
spanned by the first 6 components. This space is referred to
as the ‘Viseme Space’ of the person.

2.2 Bringing faces to life

The previous section described an approach to extract
a set of visemes from talking faces, observed with the
ShapeSnatcher system. This section describes how novel,
static 3D face models, for which no such information is
available, can be animated.

Such animation requires a number of steps:

personalising the visemes: a set of visemes, adapted to
the physiognomy of the novel face is generated;

automatic, audio-based animation: from spoken text a
time stamped sequence of visemes is generated, that
drives the animation;

possibly modifications by the animator: ICA based tools
allow the animator to modify the result.

A good animation requires visemes that are adapted to
the shape or ‘physiognomy’ of the face at hand. One cannot
simply copy or ‘clone’ the deformations that have been ex-
tracted from one of the example faces. The adapted visemes
are created in a simple way, that in fact needs further val-
idation. Faces can be efficiently represented as points in a
so-called ‘Face Space’ [4]. These points represent their de-
viation from the average face along some principal modes.
Hence, the novel face as well as the neutral, example faces
correspond to such points. The example faces span a hyper-
plane in face space. By orthogonally projecting the novel
face onto this plane, a linear combination in terms of the
example faces is found, that comes closest to the novel face.
This procedure is illustrated in fig. 4 and yields weights that
can be applied to the visemes of the example faces to gen-
erate a set for the novel face.

Once the personalised viseme set has been produced, an
Independent Component Analysis (ICA) is applied to them.
The visemes are represented as points in their 6D IC space,
coined ‘Viseme Space’. Animation then amounts to navi-
gating through this space, from viseme to viseme. This is
where the issue of co-articulation pops up. Visemes exert
mutual influences, i.e. the way in which we move our lips
for a certain vocal or consonant is also dependent on the pre-
vious and subsequent sounds. This is similar to spline fit-
ting, where surrounding points influence how close a point
is approached, under what orientation the trajectory passes,
etc. The audio track that drives the animation specifies the



Figure 4. Visemes are adapted to the face physiog-
nomu by comparing it to faces for which visemes have
been extracted (see text).

visemes and their timing, but still has to be translated into
a precise trajectory in Viseme Space. In our animation the
trajectory is modeled as a NURBS, attracted with differ-
ent strengths towards the different visemes along its path.
These differences in strength reflect the variability in differ-
ent viseme shapes. There is much more room for change
when pronouncing ‘d’ than there is for ‘m’, for instance.
A distinction is made between vocals and labial consonants
on the one hand, and the remainder of the visemes on the
other. The former impose their deformations much more
strictly onto the animation than the latter, which can be pro-
nounced with a lot of visual variation. In terms of the spline
fitting this means that the animation trajectory will move
precisely through the former visemes and will only be at-
tracted towards the latter. The strength of this attraction
differs between subclasses of the remaining visemes.

The foregoing animation from audio runs automatically.
The animator can afterwards still change the influences of
the different visemes, as well as the complete NURBS that
define the trajectory in Viseme Space. We have used in-
dependent rather than principal components as they were
found to provide a more intuitive basis.

3 Wide-baseline matching

Although 3D reconstructions can in principle be made
from a limited number of stills, fully automated process-
ing is only possible if the images have much overlap and
are offered in the order of a continuous camera motion. The
name ‘shape-from-video’ underlines this assumption. In or-
der to automate similar reconstructions from stills that are
taken from substantially different viewpoints, the computer
should find correspondences under ‘wide baseline’ condi-
tions. Consider the wide baseline image pair of fig. 5. The
two images have been taken from very different viewing di-

Figure 5. Two images of the same scene, but taken
under very different viewing directions. The task is to
find an initial set of features, that suffice to extract the
epipolar geometry, which can then serve as a support
for dense correspondence search.



rections. Stereo and shape-from-video systems will most
often not even get started in such cases, as correspondences
are difficult to find.

The shape-from-video approach splits the correspon-
dence problem into two stages. The first stage determines
correspondences for a set of discrete features, usually cor-
ners. Based on these correspondences, the epipolar geome-
try for image pairs is determined. The second stage searches
dense correspondences along the epipolar lines. Here, we
propose a similar strategy for wide baseline matching. The
focus of the discussion is on the first step, i.e. the initial
matching of a discrete set of features.

3.1 The extraction of invariant neighbourhoods

When looking for initial features to match, we should
focus on local structures. Otherwise, occlusions and chang-
ing backgrounds will cause problems, certainly under wide
baseline conditions. Here, we look at small regions, con-
structed around or near interest points. If these regions are
to be matched, they ought to cover the same part of the
scene in the different views. Hence, they have to take on
different shapes in the different images. The most important
aspect of the strategy proposed here is that the region extrac-
tion works on the basis of individual images, i.e. without
any knowledge about the other images. This property is key
in avoiding a slow and combinatoric search for matches.
In the proposed scheme regions are constructed in one go
based on a single image, instead of by selecting a region in
one image and then trying to find a match by deforming and
relocating a region in the other image until some matching
score surpasses a threshold. Here, the corresponding region
in the second image is extracted independently, before one
even attempts to match regions. The crux of the matter is
that every step in the region extraction is invariant under
the image variations one wants to be robust against. This is
discussed in more detail next.

On the one hand the viewpoint may strongly change.
Hence, the extraction has to survive affine deformations of
the regions, not just in-plane rotations and translations. In
fact, affine transformation also not fully cover the observed
changes. This model will only suffice for regions that are
sufficiently small and planar. We assume that a reasonable
number of such regions will be found, an expectation borne
out in practice. On the other hand, strong changes in il-
lumination conditions may occur between the views. The
chance of this happening will actually grow with the angle
over which the camera rotates. The relative contributions of
light sources will change more than in the frame-to-frame
changes in a video. We model the effects of changing illu-
mination by scaling the three colour bands (R,G,B) with
different scale factors and by adding different offsets.

If we now want to construct regions that are in corre-

spondence irrespective of these changes, every step in their
construction ought to be invariant under both the geometric
and photometric transformations just described. We have
developed several such construction processes [28, 29] and
the example regions in fig. 6 have been construced like that.
As mentioned before, these constructions allow the com-
puter to extract the regions in the two views completely in-
dependently. After they have been constructed, they can
be matched efficiently on the basis of features that are ex-
tracted from the colour patterns that they enclose. These
features again are invariant under both the geometric and the
photometric transformations considered. To be a bit more
precise, a feature vector of moment invariants is used. Re-
cently, several additional constructions have been proposed
by other researchers [3, 16]. Fig. 6 shows the regions that
have been extracted for fig. 5. Only a restricted set of match-
ing regions are shown, in order not to overload the figure.
We refer to the regions as ‘invariant neighbourhoods’.

3.2 Further wide baseline issues

The matching of invariant neighbourhoods is only the
first step in the search for correspondences. Good 3D
models require the selection of dense, pixelwise correspon-
dences. Although the invariant neighbourhoods can pro-
vide us with the epipolar geometry, also the search along
the epipolar lines for the dense correspondences requires
adaptations. Disparities tend to get larger, a smaller part of
the scene is visible to both cameras, and intensities of corre-
sponding pixels vary more. In order to better cope with such
problems, we propose a scheme that is based on the coupled
evolution of Partial Differential Equations or the ‘CODIM’
scheme (COupled DIffusion Maps). This approach is de-
scribed in more detail in a companion paper [27]. The
point of departure of this method is optical flow. An im-
portant difference is that the search for correspondences is
‘bi-local’, in that spatio-temporal derivatives are taken at
two different points in the two images. Disparities or mo-
tions are subdivided into a current estimate and a residue,
which is reduced as the iterative process works its way to-
wards the solution. This decomposition makes it possible to
focus on the smaller residue, which is in better agreement
with the linearisation that is behind optical flow.

If partial 3D reconstructions have already been produced
from different photo sets, registration may better be done in
3D. The state-of-the-art in 3D registration is similar to that
in 2D. Several, excellent methods have been proposed to
precisely fit together partial, 3D reconstructions from initial
positions that are close to the final solution [2, 5, 32]. This
is very important, as it is usually easier to manually position
the 3D patches more or less right, than it is to perform the
fine docking by hand. Of course, it would be nicer if also
the initial, crude positioning could be done by the computer,



Figure 6. Invariant regions that were extracted for
the images in fig. 5. Only regions are shown for which
a corresponding partner in the other image has been
found, but the regions in the two images have been
extracted without knowledge about the other image.

as this would render the whole registration automatic.
Again, invariants have proven instrumental in the de-

velopment of methods that achieve such crude registration
from arbitrary, initial 3D patch positions. They use special
points or curves on the surface, which are characterised with
invariants [10, 14]. A feature type that we have found to be
particularly useful are bitangent curves. These curves are
formed as follows. Suppose a plane touches the surface at
two points (i.e. it is a ‘bitangent plane’). Now one roles
this plane over the surface so that it keeps in touch at two
points. This yields pairs of bitangent curves. They are inter-
esting, because they are invariant under Euclidean, affine,
and even projective transformations. Moreover, the curve
pairs can be given simple, invariant descriptions, especially
in the case of Euclidean and affine transformations. These
descriptions require only first derivatives [30].

4 Viewpoint-dependent texturez

Over recent years, image-based techniques for scene ren-
dering have been developed (e.g the seminal lumigraph [11]
work by Gortler et al.). These techniques can yield stunning
visual quality, without ever getting at the underlying 3D
shapes. Remarkably enough, this kind of image combina-
tion has first been exploited for the visualisation of complete
objects and scenes. Texture mapping is, in fact, a much ear-
lier use of image-based rendering. Since the early days of
graphics, its task has been to conceal the lack of fine surface
geometry. In contrast to the previously mentioned methods,
a single, fixed texture image is used. Nevertheless, using the
same texture for different viewing conditions has its limita-
tions. The simple foreshortening and smooth surface shad-
ing of traditional texture mapping cannot mimic 3D effects
such as variable self-occlusions and self-shadowing. This
could be remedied by letting the mapped textures depend
on viewpoint and illumination direction, but without resort-
ing to a 3D surface reconstruction. Combining a geometry-
based approach for the overall shapes of objects with an
image-based rendering of the surface details seems to hold
good promise for the realistic visualisation of scenes. The
interactions with and between the objects is easier to imple-
ment, while the photo-realism of the scene rendering can be
improved.

The first steps towards multiview texture analysis and
synthesis have already been taken. Firstly, the changes in
textures that occur under changing viewpoints and illumi-
nations have been recorded systematically for a series of
materials [7]. In order to get a handle on these effects,
several authors have developed textures descriptions that ei-
ther include such changes or are invariant. The outputs of
Gaussian derivative filters for different viewing conditions
have been clustered and used for material recognition and
reproduction of the same piece of texture [15]. Chantler



and coworkers [17] have focused on the effects of chang-
ing illumination, both for analysis and synthesis, but do not
choose a purely image-based approach. The approach of
Cula and Dana [6] is image-based and is oriented towards
texture classification. In some respect their system comes
close to ours, but we focus on the synthesis of multiview
textures. An important difference of these approaches with
earlier work on bump maps and relief textures is that no 3D
information is extracted.

4.1 The basic texture model

Our multiview texture model is an extension of a single
view texture modeling technique. The latter extracts some
carefully chosen statistics from an example texture during
an analysis step. Synthesis then consists of constructing
textures with similar statistics. The method has the advan-
tage that it can handle both stochastic and structural tex-
tures. It does not copy any part of the example texture,
thereby avoiding repetitions in the synthesized textures. It
includes both short-range and long-range pixel interactions
and therefore can pick up small- and large-scale effects.
The texture model is also highly compact, only a couple
of Kbytes. These advantages are preserved in the extended
version that includes viewpoint dependency.

The single view modeling step extracts first- and second-
order statistics from an example image. The first-order
statistics correspond to the intensity histograms. The
second-order statistics draw upon the cooccurrence princi-
ple: for pixel pairs at fixed relative positions the intensities
are compared. The pixel pairs are called cliques and pairs
with the same relative positions form a clique type. The
clique is an ordered pair. Hence, a tail and head pixel can be
distinguished. Instead of storing the complete joint proba-
bility distributions for the different clique types, our model
only stores the histogram of the intensity differences be-
tween the head and tail pixels. It is not practical to collect
these second-order statistics for all possible clique types.
A selection of clique types is made that together contain
sufficient information to generate a texture that is perceptu-
ally very similar. This selection is described elsewhere [34].
There it is also shown how this model can be used to synthe-
sise a texture that is similar to the example texture. Suffice
it here to say that the synthesis algorithm tries to generate
a texture that has the same intensity difference statistics for
the different clique types in the model. The same paper dis-
cusses the generalisation of these principles towards colour
textures.

In summary, the basic texture model contains the infor-
mation necessary to produce a texture for one viewpoint and
illumination direction. This model consists of two types of
information. On the one hand, there is the set of cliques
types, which describe which interactions with neighbouring

pixels are taken into account. This set will be referred at as
the neighbourhood system. On the other hand, there is the
intensity histogram of the textures, as well as the intensity
difference histograms for the different clique types. These
intensity statistics are referred to as the statistical parame-
ter set. The choice of the neighbourhood system takes far
more time than the extraction of the corresponding statisti-
cal parameter set.

4.2 Multiview texture models

The multiview texture model that we have proposed [34,
35], takes the single view model as its point of depar-
ture. The adaptations towards different viewing conditions
are twofold. On the one hand, an affine deformation is
applied to the neighbourhood system, in accordance with
the change in viewing direction. Typically, the neighbour-
hood system is extracted once from a fronto-parallel view
of the texture. This neighbourhood system is then affinely
deformed in accordance with the slant and tilt angles un-
der which other views are taken. Further refinements and
changes in illumination are then taken into account through
a complete update of the statistical parameter set for every
novel view: all the histograms are extracted anew for the
affinely deformed set of cliques, from the novel view taken
under known conditions. This is repeated for all such ex-
amples, i.e. for all example images for different viewing
and/or illumination directions. Complete knowledge about
these directions is assumed. The advantage of this multi-
view modeling is that it hardly takes longer than the model-
ing for a single, overhead view. The neighbourhood system
does not have to be selected again, as it is obtained through
simple deformation. The extraction of the updated statisti-
cal parameter sets can be done very quickly.

Textures corresponding to unseen viewing conditions
can only be generated in as far as sufficiently similar view-
ing conditions have been observed. The neighbourhood sys-
tem can be adapted easily, but the statistical parameter set
has to be obtained from interpolation or – and this may be
a problem – extrapolation of those observed from similar
cases. This interpolation or extrapolation is simplified by a
PCA description of the histograms. This leads to very com-
pact descriptions of these histograms, as weighted combi-
nations of the principal components. Splines fitted to these
weights yield the interpolated (or extrapolated) values. For
this method to work well, sufficient examples must have
been provided. An example of multiview texture is given
in fig. 7. The top orange is a real one, the one below is a
sphere clipped by the same silhouet, and oovered with mul-
tiview texture learned from the real one.
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Figure 7. The orange in the top image is real. The
orange in the bottom image actually is a sphere cov-
ered with viewpoint dependent texture, and clipped
with the outline of the top image. The result is far
more realistic than what can be achieved through the
mapping of viewpoint independent texture and simple
shading.
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