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Abstract 

We describe an unusual ASR application: recognition of command 
words from severely dysarthric speakers, who have poor control of 
their articulators. The goal is to allow these clients to control 
assistive technology by voice. While this is a small vocabulary, 
speaker-dependent, isolated-word application, the speech material is 
more variable than normal, and only a small amount of data is 
available for training. After training a CDHMM recogniser, it is 
necessary to predict its likely performance without using an 
independent test set,so that confusable words can be replaced by 
alternatives. We present a battery of measures of consistency and 
confusability, based on forced-alignment, which can be used to 
predict recogniser performance. We show how these measures 
perform, and how they are presented to the clinicians who are the 
users of the system. 

1. Introduction 

The work reported here is part of the STARDUST1 project which 
aims to provide severely dysarthric speakers with voice access to 
assistive technology. Dysarthrias are a family of neurologically-based 
speech disorders characterized by loss of control of the articulators 
[Enderby and Emerson 95]. Speech produced by dysarthric speakers 
can be very difficult for listeners unfamiliar with the speaker to 
understand. Since motor-neuron disease or trauma often affects the 
cognitive and physical processes responsible for speech production, 
dysarthric symptoms often accompany neurological conditions such 
as cerebral palsy, head injury and multiple sclerosis. Thus many 
people with dysarthria are often physically incapacitated to the 
extent that spoken commands become an attractive alternative to 
normal keyboard-and-mouse input, despite the difficulty of achieving 
robust Automatic Speech Recognition for dysarthric material. 
 
There have been a number of studies concerning the feasibility of 
ASR for dysarthric speech [e.g. Blaney & Wilson 00, Bowes 99, 
Deller et al. 91, Doyle et al. 97, Ferrier et al. 95, Kotler et al 97, 
Rosengren et al. 95, Thomas-Stonell et al. 98] which are reviewed in 
[Rosen et al. 00, Hawley 02]. Unsurprisingly, these studies report 
rather varied performance: there is a general consensus that ASR  can 
be viable for mild to moderate dysarthria, using commercially 

                                                                 
1 Speech Training and Recognition for Dysarthric Users of Speech 
Technology. 

available ‘dictation’ systems. However, more severe conditions defeat 
these systems except for a few individuals. For severely dysarthric 
speech, recognisers trained on a normal speech corpus cannot be 
expected to work well.  Though some systems embody algorithms 
which adapt their statistical models to the speaker [e.g. Leggetter and 
Woodland 95], adaptation techniques are insufficient to deal with 
gross abnormalities. In an attempt to reduce speech production 
inconsistency and hence the success of voice-driven assistive 
technology , the ASR component in STARDUST is closely coupled 
with therapy. Recognition will improve if the material becomes more 
consistent, an objective which is greatly facilitated if the speaker is 
provided with some type of visual feedback informed by a matching 
score indicating the incoming utterance’s degree of fit to what the 
recogniser has been trained to expect. More fine-grained visual 
feedback, related to phone-level articulation, can also be achieved via 
phonetic maps [Hatzis, Green & Howard 97] which are trained to 
relate speech acoustics to chosen positions on a two-dimensional 
display. The following section discusses the STARDUST application 
as an ASR problem. We then present the evaluation tools we have 
developed along with a selection of baseline results. We conclude 
with a discussion about the application of these tools to the 
assessment of speech disorders. A companion paper [Hatzis et al, 
03] covers the STARDUST software and presents clinical results. 

2. The STARDUST ASR Application 

In STARDUST, the aim is to provide severely dysarthric people 
with the ability to control assistive technology by voice. Since it is 
not usual for any one client to require access to more than a few 
devices, the recognisers built for these patients normally require a 
small vocabulary of isolated command words, e.g. ‘Open’, ‘TV’, 
‘Channel’, ‘On’, ‘Off’).  
 
Since there is so much variation between individuals, speaker-
dependent recognisers are trained for each client. Small-vocabulary, 
speaker-dependent, isolated-word recognition is a relatively easy 
ASR task, however the material to be recognised is significantly more 
variable (or less consistent) than normal. Furthermore, only small 
amounts of training data are available: many clients are rapidly 
fatigued by the effort required to produce multiple utterances of their 
command words when prompted. After identifying a list of devices 
suitable for the client to control, an appropriate vocabulary is 
selected (normally not exceeding ten words) and the collection of 
training data is achieved in recording ‘sessions’ where the client 



repeats each word of the vocabulary 10 times; on average, between 
two to four sessions are recorded for each client. STARDUST 
supports a longitudinal study with 8 clients currently enrolled in the 
pilot programme. 

2.1. Recogniser Configuration and Performance 

We use the HTK toolkit [Young et al. 95] to build isolated word 
recognisers for dysarthric speech using Continuous Density Hidden 
Markov Models [Rabiner 89]. The configuration is quite 
conventional: 

• Whole-word rather than phone-level models, 
• Typically 11 HMM states, 
• Typically 3 mixture Gaussian distributions per state, 
• ‘Straight-through’ model topology allowing only self-

transitions and transitions to the next state, 
• Acoustic vectors consisting of Mel Frequency Cepstral 

Coefficients, typically with differences but  without overall 
energy (dysarthric speakers often have difficulty 
maintaining a steady volume). 

• Training data labelled at the word level 
• Sampling rate for audio data of 16KHz, with a 10ms frame 

rate. 
 
Baseline results for normal and dysarthric speakers on 10-word 
vocabularies are encouraging. The table below gives word accuracy on 
previously unseen test data after training on 20 examples of each of 
10 words by the same speaker. All material was recorded before the 
dysarthric speakers had received any therapy: 
 

Speaker Recogniser Accuracy (%) 
MP (Normal) 100 
AH (Normal) 100 
GR (Severely Dysarthric) 87 
JT (Severely Dysarthric) 100 
CC (Severely Dysarthric) 96 

 Table 1: Accuracy Rates for Isolated-Word  
Speaker-Dependent Recognisers 

 
The above performances were achieved with recognisers trained on 20 
utterances per word1. This small quantity of training data presents 
unusual problems: normally a corpus is available which is sufficiently 
large to be split into training and test sets, with performance 
measured on the test set dropping only slightly compared to 
performance on the training set. Here, in contrast: 

• It is unlikely that good results on a small training set will 
hold up under everyday conditions. 

• To produce the best-performing recogniser one should use 
all, or nearly all, the available data for training rather than 
reserving some for evaluation. 

• Predictions of recogniser performance cannot be based on 
an analysis of test-set confusion matrices.  

In addition, the intended users of STARDUST software are 
clinicians2 rather than speech technologists. These clinicians must 
configure and train speaker-dependent recognisers, not merely use 
them. STARDUST therefore provides Graphical User Interface 
(GUI) tools to facilitate the collection, selection, and labelling of data 
along with the actual building of the recognisers themselves. Once 

                                                                 
1 On the basis that one training vector is required for every free 
parameter in the model, 45 examples of each word would be required.  
2 Or even the clients themselves. 

such a recogniser has been constructed, our clinicians require a report 
forecasting – in non-technical terms – the likely performance of the 
recogniser in the field. This is the topic of the next section. 

3. Recogniser Evaluation Measures 

3.1. Consistency Measures  

In STARDUST it is possible to modify a client’s recognition 
vocabulary. This is important because it is usual for a dysarthric 
speaker to produce some words more consistently than others (‘TV’, 
for example might be an easier proposition than ‘television’). While 
clinical assessment can help in identifying such words, a quantitative 
measure of word-level consistency is needed: HMM-based 
recognisers do not decode speech in the same manner that human 
listeners do and their results are sometimes counter-intuitive. 
Similarly, it would be useful to measure the overall consistency of the 
speech in the training corpus, across all chosen words. Overall 
consistency could be used to assess the severity of the disorder and 
to chart the client’s progress as therapy proceeds. At a finer level, it 
is useful to track utterance-level consistency: the correlation between 
the probability scores returned by a client’s individual productions of 
a given word and the norm for that word. With this measure the 
clinician can identify outlier utterances for removal from the training 
set.  

3.2. Predicting Confusions: Confusability Measures 

In addition to consistency measures, robust recognition performance 
could be facilitated if some means of predicting recognition errors 
could be devised, the aim being to identify words which can be 
expected to be easily confused with each other. Conventionally, test-
set confusion matrices are used for this purpose, but these are 
unlikely to be very informative over sparse data, and in any case it  is 
advisable to use all the data (except outliers) for training purposes. 
An alternative is to devise a measure of word-level confusability. 
Previous work on word confusability measures has been reported in 
[Roe and Riley 94, Tan et al, 99], but both these studies rely on 
making use of the normal phonetic structure of a word, which is 
inappropriate for disordered speech.  

3.3. Formulating Consistency and Confusability Measures 

An alternative to phonetically-based metrics is to define probability-
based measures based on forced alignment against trained models, 
based exclusively on the training set and the models. The following 
scheme uses forced-alignment of training set utterances against the 
models. 

• We have a training set for a vocabulary of N words, W1.. 

WN  

• We have trained a CDHMM Mi for each word Wi. 

• wjk is the kth repetition of the jth word in the training set 

By forced alignment, we can compute the per-frame log likelihood 
Lijk of each model generating each example of each word on the 

Viterbi path.  The consistency δi of word Wi  is obtained by  

δi = (Sk Liik)/ni,        (1) 
 
where ni is the number of examples of Wi  in the training set: we 

average the scores obtained by aligning all the examples of a word 
against the model for that word.  The reasoning behind this is that the 
more variability there is in the training data for each speech unit, the 
larger the variances in that unit’s HMM state distributions will be. 



The forced-alignment likelihoods will be lower for an inconsistently 
spoken word than for a consistent one since its distributions will be 
flatter.  
The overall consistency of the training corpus, ∆, is just the average 
of the δi:  
∆= (Si δi)/N              (2) 

The confusability between Wi and Wj is defined by  

Cij= (Sk Lijk)/nj ,          (3) 

 
Cij is the average score obtained by aligning examples of Wj against 

Mi. The higher this is, the greater the likelihood that Wj will be 

misrecognised as Wi . 

3.4. Confusability Matrices 

The confusability measures Cij between pairs of words can be viewed 
conveniently as a confusability matrix. To make interpretation 
easy, Cij is used to code the colour of each cell. The examples below 
use the following colour map which may represent either a standard 
or relative range of values. 

High 
Confusability 

                        
Low  
Confusability 

Table  2: Confusability Colour Map 

Table 3 shows a confusability matrix for a recogniser trained for 
normal speaker MP. Table 4 is the corresponding matrix for our most 
severely dysarthric subject, GR. The recognisers have the same 
vocabulary.  
 
The diagonal of the confusability matrix corresponds to the word-
level consistency measures. For a recogniser expected to perform 
well, cells on the diagonal of the confusability matrix (that is, the 
word aligned with itself) should be towards the red end of the scale 
and off-diagonal (the word aligned with other models) cells should be 
towards the blue. This is the case the normal speaker MP (Table 3). 
For a dysarthric speaker, the red-blue distinction will not be so 
pronounced, as is apparent for GR in Table 4.  

3.5. Experiments with the Evaluation Measures 

The behaviour of the overall consistency measure ∆ can be verified 
by constructing recognisers for mixtures of speech material from 
normal and dysarthric speakers. For the same 10-word vocabulary, 
corpora consisting of 20 examples of each word were constructed by 
mixing normal utterances (speaker MP) with utterances from each of 
two dysarthric speakers (GR and JT), in varying proportions. 
Overall consistency measures for these corpora are shown in Figure 
1. The leftmost points are for all-normal speech and the rightmost 
points are all-dysarthric speech. In between, the proportion of 
dysarthric speech is increased by 10% at each step. Consistency 
worsens as more dysarthric speech is introduced, until the dysarthric 
speech begins to dominate the corpus, at which stage consistency 
then recovers, but not to the level of the normal speech. GR’s 
condition is more severe than that of JT, so when his speech is mixed 
with normal speech in increasing proportions, consistency 
deteriorates more acutely and recovers less than for JT. Note that 
since consistency measures and confusability measures are averages 
over log-likelihoods, they are negative numbers representing small 
quantities, and a difference of x between two such measures should 
be thought of as x orders of magnitude.  
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Table 3: Confusability Matrix (Standard Calibration) for 
Normal Speaker MP 
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Table 4: Confusability Matrix (Standard Calibration) for 
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Figure 1: Consistency of Mixed Data Sets 

Table 5 provides informal confirmation that confusability is a good 
predictor of confusions. Here, the confusions on a test set (20 
utterances per word) are superimposed on the GR confusability 
matrix of table 5.   
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TV 12   6      2 

alarm  15 5        

lamp   11 8 1       

channel 1   12      7 

on     19  1    

off     1 10 9    

up     3 7 10    

down    1    18  1 

radio    1     9 10 

volume         1 19 

Table 5: Test Set Confusions Superimposed on GR Confusability 
Matrix 

3.6. Using the Evaluation Measures 

When a new recogniser has been built, the STARDUST software 
automatically generates an html-formatted report providing, among 
other statistical data, the recogniser’s confusability matrix and 
utterance-level consistency tables. As an example of how the report 
is used, we notice that in Table 5, ‘Alarm’ and ‘Lamp’ show clear 
evidence of confusability with each other (but less so with other 
words) and therefore one or the other should be removed. ‘Volume’ 
returns high confusability scores for nearly all the words in the 
vocabulary, indicating that it should be replaced.  

4. Relationship to the Assessment of Speech 
Disorders  

The assessment of speech disorders can contribute substantial 
knowledge to assist in the diagnosis of the underlying neurological 
problems.  Assessment is also conducted to assist in monitoring the 
effectiveness of speech and language therapy.  One important 
component of such an assessment is an analysis of intelligibility.  
Intelligibility assessments are  normally based on listening tests and 
are notoriously complex and time consuming to conduct and 
psychometrically weak, having poor reliability and validity.  The 
confusability and consistency measures defined above provide 
complimentary (and to some extent an alternative) metrics based only 
on statistics of the speech acoustics.  These objective measures can 
be obtained rapidly and have the psychometric properties of being 
reliable and repeatable. They can be used within clinical sessions and 
the results can be analysed in more or less detail, as is required.  
Speech consistency is not the same as speech intelligibility but may 
be expected to be related to it, a topic offering much scope for future 
studies. The relationship between intelligibility and consistency has 
not been reviewed elsewhere and remains a piece of work that this 
team will pursue.   
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